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Abstract. Using the spin wave approximation, we study the entanglement of a two-spin system in an an-
tiferromagnetic environment. It is shown analytically that the concurrence of the two-spin system displays
a Gaussian decay and depends on the quantum correlations and the structure of the environment. The
relation between the concurrence and the environmental temperature is given explicitly.

PACS. 03.67.Mn Entanglement production, characterization and manipulation – 03.65.Yz Decoherence;
open systems; quantum statistical methods – 03.67.-a Quantum information

Entanglement is one of the distinguishing properties of
quantum mechanics and shows potential applications
in quantum communication and information process-
ing [1–5]. Because of this reason, the entanglement be-
tween two qubits deserves to be analyzed in all respects,
especially the influences of the environment which cause
the decoherence of the qubits. The dynamic evolution of
a small quantum system interacting with large open en-
vironment has attracted much attention in recent years.
As one aspect of such problem, some authors [6–8] con-
sidered a single spin or several spins interacting with a
spin environment. Although useful results have been ob-
tained, they made assumptions about the distribution of
the spin states of the environment or neglected the en-
vironmental dynamics. This is not the real case. In fact,
the environment has structure and certain quantum cor-
relations may exist among spins in the environment. Re-
cently, Lucamarini et al. [9] considered the influence of
the environment on the concurrence [10] of a two-spin sys-
tem. The environment was described by Ising model and
the mean field approximation was used. The authors cal-
culated the concurrence which reflects the entanglement
degree of the two-spin system. It is not a trivial work to
consider other kinds of the environment such as an anti-
ferromagnetic environment. The concurrence of two spins
embedded in an antiferromagnetic environment has been
calculated [11,12]. However, for simplicity, the environ-
ment was assumed to be spin chains and the time evo-
lution of the concurrence was not given. In the present
paper, we will continue the study and use the spin wave
approximation to deal with an antiferromagnetic environ-
ment of any dimensions. In comparison with the mean field
approximation, the spin wave approximation has more ad-
vantages [13]. We show analytically that the concurrence
displays a Gaussian decay and depends on the quantum

a e-mail: yxz@sjtu.edu.cn

correlations and the structure of the environment. The
relation between the concurrence and the environmental
temperature is given explicitly.

We consider a two-spin system coupling with an anti-
ferromagnetic environment. The system and the environ-
ment consist of spin- 1

2 atoms. HS and HB are the Hamil-
tonians of the system and the environment respectively,
and HSB is the coupling term [9,13]:

H = HS +HSB +HB , (1)

where

HS = −µ0 (Sz
01 + Sz

02) − ξ0S
z
01S

z
02, (2)

HSB = − J0√
N

(Sz
01 + Sz

02)
∑

i

(
Sz

a,i + Sz
b,i

)
, (3)

HB = J
∑

i,�δ

Sa,i · Sb,i+�δ + J
∑

j,�δ

Sb,j · Sa,j+�δ, (4)

where µ0 is the coupling constant with an external mag-
netic field in the z direction. ξ0 represents the coupling
constant between the two spins. J0 is the exchange cou-
pling constant between the system and its environment,
whereas J is that in the environment and is positive for
antiferromagnets. The effects of next-nearest-neighbor in-
teractions are neglected, although they may be impor-
tant in real antiferromagnets. We assume that the spin
structure of the environment may be divided into two
interpenetrating sublattices a and b with the property
that all nearest neighbors of an atom on a lie on b, and
vice versa [13]. Sa,i (Sb,j) represents the spin operator of
the ith (jth) atom on sublattice a (b). Each sublattice
contains N atoms. The indices i and j label the N atoms,
whereas the vectors �δ connect atom i or j with its nearest
neighbors.
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We use the spin wave approximation [13] to map spin
operators of the environment onto boson operators. After
the Holstein-Primakoff transformation:

S+
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√
1 − a+

i aiai, S−
a,i = a+

i

√
1 − a+

i ai,

Sz
a,i =

1
2
− a+

i ai, (5)

S+
b,j = b+j

√
1 − b+j bj , S−

b,j =
√

1 − b+j bjbj,

Sz
b,j = b+j bj −

1
2
, (6)

with low-lying states of the environment, the Hamiltoni-
ans HSB and HB are written as

HSB = − J0√
N

(Sz
01 + Sz

02)
∑

i

(
b+i bi − a+

i ai

)
, (7)

HB = −1
2
NMJ +MJ
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i b
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)
, (8)

where M is the number of the nearest neighbors of an
atom. By transforming to the momentum space, we have

HSB = − J0√
N

(Sz
01 + Sz

02)
∑

k

(
b+k bk − a+

k ak
)
, (9)

HB = −1
2
NMJ +MJ
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+MJ
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γk
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where γk = M−1
∑

�δ e
ik·�δ. Then by using the Bogoliubov

transformation, the Hamiltonians HSB and HB can be
diagonalized (� = 1):

HSB = − J0√
N

(Sz
01 + Sz

02)
∑

k

(β+
k βk − α+

kαk), (11)

HB = −3
2
NMJ +

∑

k

ωk

(
α+

k αk + β+
k βk + 1

)
, (12)

where α+
k (αk) and β+

k (βk) are the creation (annihilation)
operators of the two different magnons with wavevector k
and frequency ωk respectively. For cubic crystal system,

ωk = (2M)1/2Jkl, (13)

where l is the side length of cubic primitive cell of sublat-
tice. This means that the magnon energy increases linearly
with k for antiferromagnets.

We assume the initial density matrix of the system-
environment to be factorized, i.e., ρ(0) = |ψ〉〈ψ| ⊗ ρB.
The initial state of the two-spin system is

|ψ〉 = α|00〉 + β|01〉 + γ|10〉 + δ|11〉, (14)

|α|2 + |β|2 + |γ|2 + |δ|2 = 1, (15)

where |0〉 and |1〉 are the lower and upper eigenstates
of Sz

0 respectively. The density matrix of the environment
satisfies a thermal distribution, that is ρB = e−HB/T /Z,
where Z is the partition function and the Boltzmann con-
stant has been set to one. After tracing over the environ-
mental degrees of freedom, we obtain the reduced density
matrix of the system:

ρs(t) = trB

{
e−iHt [|ψ〉〈ψ| ⊗ ρB] eiHt

}
. (16)

The matrix ρs(t) is a 4 × 4 matrix in the standard ba-
sis |00〉, |01〉, |10〉, |11〉. As an example, we just illustrate
the calculation of one element of the matrix [14]:

[ρs(t)]12 = 〈00|ρs(t)|01〉
=
αβ∗

Z
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where

Z = trBe
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Therefore, we get

[ρs(t)]12 = αβ∗e−i(µ0−ξ0/2)t y1y2
y2

, (20)

where
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1
1 − e−ωk/T

, (21)
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t
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From equation (21), we arrive at

ln y = −
∑

k

ln
(
1 − e−ωk/T

)

= − V

8π3

∫
ln
(
1 − e−ωk/T

)
4πk2dk, (24)

where V is the volume of the environment. At low temper-
ature such that (ωk)max � T , with x = (2M)1/2Jkl/T ,

ln y = − NT 3

4
√

2π2M3/2J3

∫ ∞

0

ln
(
1 − e−x

)
x2dx. (25)
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ρs(t) =




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α∗γei(µ0−ξ0/2)tA β∗γ |γ|2 γδ∗e−i(µ0+ξ0/2)tA
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


(32)

In the same way, we have
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where
θ =

J0√
N
t. (28)

Let
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it is obvious f(θ) → 0 as θ → 0.
To find the limit relation between θ and f(θ), we

calculate

η = lim
θ→0

f(θ)
θ2

= lim
θ→0

f ′(θ)
2θ
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∫∞
0

−ieiθe−xx2
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=
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π2

3
. (30)

If N is large enough, θ → 0 and f(θ) = ηθ2. Finally, we
have

[ρs(t)]12 = αβ∗e−i(µ0−ξ0/2)te
− J2

0 T3

12
√

2M3/2J3 t2

= αβ∗e−i(µ0−ξ0/2)te
− t2

τ2
0 , (31)

where the decoherence time τ0 = 2
√

3
√

2M3/2J3/J2
0T

3.
In the same way, we get the other elements and write the
reduced density matrix as

see equation (32) above,

where A = e−t2/τ2
0 .

We use the concurrence to measure the entanglement
between two spins. It ranges from 0 for separable states

to 1 for maximally entangled states. The concurrence is
defined as [10]

C12 = max{λ1 − λ2 − λ3 − λ4, 0}, (33)

where the quantities λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the square
roots of the eigenvalues of the operator

R12 = ρs (σy ⊗ σy) ρ∗s (σy ⊗ σy) . (34)

Assuming the initial state of the two-spin system as |ψ〉 =
α|00〉 + δ|11〉, we obtain the concurrence

C12 = 2|α||δ|e−
J2
0 T3

3
√

2M3/2J3 t2

. (35)

From equation (35) we can clearly see that the concurrence
displays a Gaussian decay. The factor t2 in the exponent
denotes the intrinsically reversible nature of the process,
in contrast to irreversibility introduced by Markovian ap-
proach. With the increase of the exchange coupling con-
stant J , the decay rate decreases. It means that the strong
quantum correlations in the environment limit the de-
cay of the concurrence. This is quite easy to understand.
The strong quantum correlations in the environment al-
low energy exchange without using the system as an in-
termediary. Without the correlations, the energy must
flow through the system, leaving the entanglement badly
spoiled. The structure of the environment also influences
the concurrence of the system, since large coordination
number can suppress the decay rate of the concurrence. It
is obvious that the concurrence is sensitive to the environ-
mental temperatures. At absolute zero temperature, the
entanglement is independent on time, so the system does
not perceive the presence of the environment. Certainly,
here we do not consider the effect of quantum fluctuations.
It should be emphasized that the main differences of our
work from those in reference [9] lie in that the environment
is described by Heisenberg model rather than Ising model.
We use the spin wave approximation rather than the mean
field approximation. The relation between the concurrence
and the environmental temperature is obtained explicitly.
Consequently, our results are more reasonable. Finally, for
visualization, we plot the concurrence as a function of time
according to equation (35). Figure 1 shows the time evo-
lution of the concurrence for three different temperatures.
Initially, the two-spin system is in a maximally entangled
state. In terms of the influence of the environment, the
entanglement between two spins is spoiled. At high tem-
perature, the entanglement disappears quickly as shown
in the figure.

In conclusion, we have studied the entanglement of
two-spin system embedded in an antiferromagnetic envi-
ronment with the help of the spin wave approximation.
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Fig. 1. Time evolution of the concurrence for three different
temperatures. α = δ =

√
2/2, M = 6, T = J (solid curve),

T = 0.5J (dashed curve), and T = 0.3J (dot-dashed curve).

The analytical results show that the concurrence displays
a Gaussian decay. With the increase of temperature, the
decay rate of the concurrence increases. Furthermore, the
strong quantum correlations and the large coordination
number in the environment limit the decay rate of the con-
currence. We are sure that the present theoretical study
will shed light on the applications of spin system in the
region of quantum communication and computation.
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